Benefits of Highway/Public Works Department Self-Assessment

1. Improve effectiveness
2. Promote staff and community pride
3. Clarify budget needs
4. Identify operation and management needs
5. Enhance professional image
6. Promote team work and staff development
7. Encourage interdepartmental coordination
8. Identify duplication and wasted effort
9. Promote public awareness
10. Improve communication

On the Road in New Hampshire

Highway and Public Works Department Self-Assessment

Self-assessment is a systematic review of management and operations policies and practices. It enables department managers to compare their policies, procedures, and practices to those of successful departments. A nationwide committee of public works officials has developed a self-assessment model. In the *Public Works Management Manual*, they list the benefits of applying the model: Those benefits are shown in the box above.

Department managers can achieve these benefits by applying self-assessment to specific functions. They can identify strengths and deficiencies, and then use their strengths to improve deficiencies. For example, if they have a clear policy for training crewmembers, they can adopt practices to improve individual’s knowledge and/or skills. If they have sound procedures to identify mainte-
nance needs and solutions, they can prepare and justify increased budgets.

By involving staff and crews in the self-assessment process, a department can improve internal communications. By involving other municipal officials and the public, it can improve external communications.

The City of Dover Department of Community Services has undertaken department-wide self-assessment. Their experiences will be highlighted in a Compensation Funds of New Hampshire (CFNH) workshop on October 8. The workshop will introduce self-assessment to selectmen, road agents, public works directors, and other town officials. Drawing on participants’ responses, the UNH T² Center and CFNH, among others, will help departments apply self-assessment.

To register for the CFNH workshop, call Kimberly at 1-800-698-CFNH (2364). For information about the self-assessment process, call the UNH T² Center at 862-2826 or 1-800-423-0060.

Sources

 ALSO IN THIS ISSUE

<table>
<thead>
<tr>
<th>Year 2000 Problems</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underground Storage Tanks</td>
<td>3</td>
</tr>
<tr>
<td>Geotextiles</td>
<td>4</td>
</tr>
<tr>
<td>Incident Command Systems for Public Works</td>
<td>6</td>
</tr>
<tr>
<td>Snow Disposal Guidelines</td>
<td>8</td>
</tr>
<tr>
<td>Publications</td>
<td>9</td>
</tr>
<tr>
<td>Videos</td>
<td>10</td>
</tr>
<tr>
<td>Milestones</td>
<td>11</td>
</tr>
<tr>
<td>Calendar</td>
<td>12</td>
</tr>
</tbody>
</table>
Year 2000 Problems?

By Chuck Wilson,
UNH T Center Project Assistant

You might have heard about the Y2K or the millenium bug. In our computer-based society, the bug is controversial. The Y2K bug denotes the fact that some older computer chips with date-keeping devices, or recent computers with old programs, will not function properly, or at all, on and after January 1, 2000.

Nearly all devices containing microchips, such as computers, traffic signals, elevators, and security systems, have stored dates or require a date to run. Many will not recognize the year 2000 as a valid date. Older microchips store dates in month/day/year format as MM/DD/YY. Since the year term (YY) may recognize a 00 entry only as the year 1900, the device will not register the year 2000.

Some computers will operate into the year 2000. The truth is, no one really knows what will happen, and there is a lot of speculation. Hardware and software that is not Y2K complaint might crash causing costly delays, errors, and lost information. For example, if your pay period contains the date December 31, 1999 within the interval, you might not get paid the correct amount, if any amount at all. The same applies to mortgages, insurance, credit cards, and mutual funds, just to name a few. As of January 1 2000, computers might not be able to record payments made by customers at various institutions, but money is not the only concern.

Of specific concern to public works officials are computer-run, date-sensitive traffic signals. Many types of signals exist in throughout the state of New Hampshire. Some signals are as simple as a constant blinking light while others operate from centralized computer systems. These systems are tied to local controllers at sequential intersections. To lessen the number of accidents, many variables are considered when designing a traffic signal system. Many signals are run by time-based coordination meaning certain days of the year, such as holidays, the signal may operate slower or faster, or maybe not at all.

The following companies assured me that their traffic signals were tested and will operate correctly through the year 2000:

- Electric Light
- East Coast Signal
- Econolite Control Products, Inc
- Naztec
- Traffic Engineering Sales, Inc.
- Peek Traffic, Inc

Some larger companies that manufacture traffic signals have devoted an entire department solely for Year 2000 projects. One company, 3M, told me that only its Opticom Priority Control System Series 500 will indirectly be affected by the rollover. The model 562IS-interface software

continued on page 11
Underground Storage Tanks
Deadline for Compliance is December 22, 1998
By Chuck Wilson, UNH T² Center Project Assistant

Underground storage tanks (UST's) common sources of groundwater contamination. Leaks can cause serious environmental damage, as well as contaminate public and private drinking water systems. Gasoline vapors can seep into basements causing explosions.

Eight years ago, the U.S. Environmental Protection Agency (EPA) set a deadline of December 22, 1998, for all UST's installed before 1988 to comply with specific regulations. The deadline applies to every owner of a UST, including municipalities. So far, only one-third of existing UST systems has been put into compliance. Non-compliant systems, referred to as substandard, are neither strong enough nor sealed well enough to prevent leaks. A list of certified contractors can be obtained from either the New Hampshire Department of Environmental Services—Oil Remediation Bureau or the UNH T² Center.

Owners and operators of substandard UST's have three options: upgrade, replace, or close the tanks.

Upgrade

The option to upgrade consists of adding corrosion protection and installing devices to protect against spills and overfills. Corrosion protection of steel tanks consists of installing an interior lining, cathodic protection, or internal lining combined with cathodic protection. New piping should be fiberglass.

To prevent spills, all UST's must have catchment basins, buckets sealed around the fill pipe. The basin should be large enough to contain any liquid that might be spilled when detaching the delivery hose. Catchment basins should also have a system for pumping or draining when they fill up.

Overfill protection devices should be installed on the new or existing tank. The three

main devices used are automatic shutoff devices, overfill alarms, and ball float valves.

Replacement

Replacement of substandard UST's consists of closure and then proper installation of a new tank or tanks. Owners must engage certified contractors to close existing tanks and install new ones.

Closure

The third option can be temporary or permanent closure. Owners can temporarily close a non-compliant UST for up to 12 months while continuing to monitor for leaks and corrosion and leaving vent lines open but securing all other lines. After 12 months, owners can permanently close the tank if it does not meet the applicable regulations. Another option is to ask for an extension from the authorities, but the owner might have to provide a contamination assessment.

To permanently close a UST, the owner must notify the regulatory authority at least 30 days prior to closing. It is necessary to determine if contamination exists around the UST. The tank must be emptied and cleaned, and either removed or filled with a stable solid, usually sand, and left in the ground.

continued on page 8
Geotextiles
By Chuck Wilson, UNH T² Center Project Assistant

In 1992 alone, 400 million square yards of geotextiles were sold in North America. Today these materials still greatly contribute to the geosynthetics market in terms of overall sales. New Hampshire road managers can benefit from greater use of geotextiles. For example, towns with muddy, boggy unpaved roads would benefit from using a geotextile to improve road conditions.

The term “geosynthetics” is used to describe a group of materials. These include geotextiles, geogrids, geonets, geomembranes, and geosynthetic clay liners. Of these materials, geotextiles are used in a broad range of civil engineering applications. Geotextiles are essentially made of either polypropylene or polyester. They are manufactured in a manner similar to household fabric using conventional textile weaving machinery.

Geotextiles, sometimes called “fabrics” or “geosynthetics,” exist in two forms: woven and non-woven. Woven fabric contains interconnecting threads, which make it high in tensile strength (can be stretched without breaking). Non-woven fabric is made with threads running parallel to each other. Because it has a lower tensile strength, it can not be stretched as much as a woven fabric.

<table>
<thead>
<tr>
<th>Type</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Woven</td>
<td>• Soil reinforcement</td>
</tr>
<tr>
<td></td>
<td>• Soil separation</td>
</tr>
<tr>
<td></td>
<td>• Road stabilization</td>
</tr>
<tr>
<td>Non-woven</td>
<td>• Drainage applications</td>
</tr>
<tr>
<td></td>
<td>• Soil filtration applications</td>
</tr>
<tr>
<td></td>
<td>• Landscape stabilization</td>
</tr>
</tbody>
</table>

Geotextiles separate, filter, drain, and reinforce soils. In particular, they can be used in soft soil stabilization, base reinforcement and erosion control/slope stability. They are also being used to make tubing for the transport of water and wastewater biomass (residuals).

After fabric is laid, aggregate is “back-dumped” on top of it.

Unpaved Roads

New Hampshire road managers and officials can save money geotextiles when reconstructing an unpaved road. A road manager should consult a manufacturer to determine whether woven or non-woven fabric is best for a particular situation. Unpaved, rural roads are often subject to severe degradation due to underground springs, extreme boggy conditions, and severe drainage problems. These conditions sometimes make a road impassable during certain periods. Geotextiles can help correct these damaging conditions.

Since soil is the basic material of any road, its stability has the greatest effect on the condition of the road. The road condition will in turn affect driver safety. A geotextile will separate the surface gravel and the roadbed, and significantly reduce distresses. When a roadbed that contains clays, silts, or peats becomes saturated with water, mud slurry forms. Then vehicles travel over the road, applying loads to the softened roadbed, and the slurry is “pumped” upward. The slurry coats the gravel, reducing friction between aggregates. Friction is reduced or lost, and the aggregates slide past one another and fall into the unstable roadbed below. This results in rutting. A geotextile, carefully placed between the subgrade and the surface gravel will help prevent rutting. It separates the two layers, not allowing the slurry to pump upward.
Installation

A two-person crew can install Geotextiles. The fabric should be rolled out at a point that allows easy access to the area by construction vehicles. The starting point should have a firm subgrade, and the fabric should be rolled out towards the softer subgrade areas. This anchors the geotextile in place during the rollout. Crews should never drag the fabric across the subgrade, and should always lay it out in the direction of traffic. Sections of fabric should overlap by about 1.5 to 3.0 feet, depending on the subgrade strength. Overlaps should be at the centerline of the road, if possible, and never in the wheel paths. If the subgrade is extremely soft, the sections should be sewn together with nylon thread, rather than just overlapped.

Crews must “back-dump” aggregate onto the fabric, taking care to prevent the wheels of the dump truck from touching the fabric. They should anchor the perimeter of the fabric with soil, rocks, or pins during the first lift of aggregate placement. A tracked bulldozer is the best machine to prepare and spread the aggregate. Aggregate lift thickness should be at least six inches. If the fabric is damaged during installation the damaged area should be patched with a new piece.

Crews should compact the aggregate according to project specifications. Initial compaction is achieved by “walking” the bulldozer back and forth over the aggregate while waiting for the next load. Final compaction is done with a vibratory compactor. The operator makes several passes without vibration, and then with full vibration.

As with any construction project, monitoring is necessary. If rutting in the aggregate layer is observed, for example, then design specifications might have to be changed.

Fabrics in NH

The Town of Temple used a geotextile in 1988 to separate the layers of a gravel road (See Road Business vol. 3, no. 4). Before placement of the geotextile, it had impassable, muddy conditions with ruts up to one foot deep. Today, the conditions are as good as just after the fabric was placed.

In 1991, the Town of Lyndeborough paved Wilton Road with a geotextile separating the pavement and the base. Prior to installation it was a “corduroy road;” the conditions before the reconstruction were both muddy and swampy with heavy rutting. There hasn’t been a crack since.

Other Benefits and Uses

Another benefit of geotextiles is the manner in which they drain water. Drainage is crucial to the performance of a road. Water can weaken subgrade soils and decrease their allowable bearing capacity. Geotextiles allow water to filter through, preventing the buildup of moisture.

Geotextiles play a major role in the reinforcement of the base course. Non-woven geotextiles have excellent frictional characteristics, locking the aggregates in place. This locking action increases the strength of the base course. Because of this, aggregate particles don’t have to be as thick. With this “locking” ability, erosion can also be controlled using geotextiles.

Retaining walls are another use for geotextiles. The fabric can provide the retained backfill with additional strength.

For more information about geotextile applications, contact the UNH T^2 Center at 1-800-423-0060.

Sources:
Richardson, Gregory N., & Barry R. Christopher, Geotextiles in Transportation, Amoco Professional Development Series, Spring 1997

Road Business, Fall 1998, Vol. 13, No. 3
Incident Command System

Knowledge of ICS is Critical for Public Works Departments

Introduction

New Hampshire has seen many recent emergencies: dam breaks, flooding, and ice storms. A mutual aid program for public works is on the horizon and Incident Command System (ICS) is vital to make it successful. This is an overview of ICS.

ICS is management tool employed to implement a municipality’s emergency plan. It is management by objective, delegation, and empowerment. It provides for a common language and a necessity when multiple agencies work together. Although developed to handle emergency situations, agencies can incorporate ICS into normal work routines. Daily use of ICS allows managers, staff, and crews to know and understand its basic structure and terminology.

Whatever the size or the number of agencies involved in an incident, all emergency events demand management to insure prompt response and effective use of resources. ICS creates a formal system for management and organization. It is an integrated approach. Therefore, municipalities can build methods of emergency management techniques such as warning, communications, evacuation, and sheltering.

A public works employee is often the first person on the scene. He or she must clearly understand ICS to manage the emergency and hand over command when appropriate.

Purpose

ICS provides clear structure to enable agencies and team members to function together in an emergency and a common vocabulary to enable clear communication. Clarification furthers efficiency by eliminating the need to “reinvent the wheel” for each emergency.

The basic goals of ICS are safety, and reducing injury and loss of life. The emergency itself will define specific goals, such as minimizing environmental damage.

Organization

A typical managerial organization operates from the top down. The Commander is at the top. The first-arriving supervisor is generally the Incident Commander (IC) and begins to organize the agencies response to the incident. ICS was developed with the knowledge that each person can effectively supervise 3-7 people, depending upon the situation. The IC assigns supervisors as crew sizes become unmanageable, and establishes added supervisory levels when needed.

The organizational structure typically includes five functional areas:

- Command—Provides for overall command and management. It might include staff positions such as Safety, Liaison, and Information.
- Operations—Covers all tactical operations.
- Planning—Orchestrates the response to the incident through collecting, evaluating, and disseminating information about the incident and about the status of resources.
- Logistics—Coordinates facilities, services, and materials for response to the incident.
- Finance/Administration—Records actions, costs, and other financial considerations.

Communication

Common vocabulary is essential in any emergency response, especially when diverse agencies are involved. Agencies often have a slightly different meaning for terms that can lead to confusion or even loss of life or property. The ICS structure and vocabulary eliminates confusion by providing predefined functions and terms.

Safety

Responding to emergencies can be hazardous. Incidents that threaten citizens also threaten the people responding. ICS establishes clear lines of
Communications to inform respondents of changing, and unsafe situations, and changes in goals. Changes must be properly managed, and usually with limited resources.

Freelancing is a safety risk that should be avoided. Freelancers are people who aren't assigned to a task and decide to work wherever they choose, without supervision. Freelancers act contrary to the activities or those implementing the action plan and put themselves and others at risk.

Practicing ICS Procedures

Emergencies are usually complex and confusing so it is important to have ICS in place and practiced. Practice helps managers and workers make decisions quickly. Practice enables managers to identify needed areas of training, standardization of radio frequencies and establish procedures.

Role of Public Works Personnel

Public Works personnel pay a key role in emergencies. If the incident were purely a public works situation, public works personnel would fill all roles. During an emergency, in smaller towns, one person may have several roles to fill:

- Public Works Director. Participate in policy making for an emergency. The policy making group plans for an emergency and looks for types of incidents that may occur in a community. They work to define the role of each agency and make political decisions. The group is responsible for the outcome of the response.
- Public Works Director and Assistant Public Works Director. May work in coordinating the incident. Coordinators perform staff functions; for instance, they may coordinate all PWD functions or act as the logistics officer during the incident.
- Foreman. Supervises crews.
- Crews. Accomplishes fieldwork to correct emergency-related problems, such as road repair, culvert replacement, debris clearance, sandbagging, and search and rescue.

ICS is vital for public works personnel to understand and practice. It is a necessary tool to manage incidents that are small in size, from departmental level, to large, employing multiple agencies. It enables all respondents to work together toward the common goals of safety, and reducing injury and loss of life. ICS is essential for the success of the mutual aid program for public works where multiple public works departments will be working together in emergency situations.

The UNH T² Center plans to work with the New Hampshire Office of Emergency Management to hold a workshop on ICS. In the meantime, to learn more about ICS, contact the State Office of Emergency Management or the Emergency Manager in your community.

Source

Innovative Storm Water Treatment Technologies Tradeshow

Presentations and Product Displays of Latest Technologies

- View new systems
- Get cost and performance information
- Meet manufacture reps

Thursday, October 19, 1998 8:00 am to 4:30 pm Center of New Hampshire, Manchester

Continental Breakfast and Lunch

Register with Joanne McLaughlin, NH Office of State Planning, 603-271-1753
Or EPA Center for Environmental Industry and Technology, 800-575-2348
Registration fee $30.00 Advanced registration recommended

Road Business, Fall 1998, Vol. 13, No.3
Snow Disposal Guidelines

We have received many questions about snow disposal. The following is an edited reprint of Snow Disposal Guidelines, “A New Hampshire Department of Environmental Services Fact Sheet.” Highway personnel in particular should be aware of the proper procedures in snow disposal.

Introduction

During each snowfall season from November to April, the Department of Environmental Services receives many complaints related to snow disposal into and/or near surface water. Concerns regarding disposal of snow cleared from streets and parking lots can be initially categorized as aesthetic or environmental. The primary aesthetic concern is the visibility of debris and huge snow piles. Environmental concerns include protection of groundwater quality, surface water quality, and aquatic life.

The environmental effects of disposed snow result from high levels of sodium chloride, sand, debris, and automobile exhaust contaminants. The method of disposal determines the potential environmental effects: disposal in surface water, adjacent to surface water, or away from surface water where meltwater will discharge to groundwater.

Each disposal alternative poses different problems. Chlorides, metals, and other contaminants are a threat to groundwater, and to some extent, surface water. Sand and silt threaten aquatic life in surface water but pose no threat to groundwater. Debris can create a water quality problem if dumped with snow into surface water.

Recommended Guidelines for Snow Disposal

The following guidelines reflect the DES view that the greatest long-term harm would occur from contamination of groundwater, but that surface water must also be protected, and that aesthetic concerns cannot take a higher priority than the environmental concerns.

- Disposed snow should be stored near flowing surface waters, but at least 25 feet from the surface water high water mark.
- A silt fence or equivalent barrier should be securely placed between the snow storage area and the high water mark.
- The snow storage area should be at least 75 feet from any private water supply well, at least 200 feet from any community water supply well, and at least 400 feet from any municipal well. (Note: Snow storage areas are prohibited in wellhead protection areas [class GAA groundwater].)
- All debris in the snow storage area should be cleared from the site prior to snow storage and all debris in the snow storage area should be cleared from the site and properly disposed of no later than May 15 after the area is used for snow storage.

Sources:
New Hampshire Department of Environmental Services WD-SWQ-6 (1992)

continued from page 3

UST’s are potentially dangerous structures. If safety rules and regulations are not followed correctly, the results can be harmful, and even fatal. Owners should always have a certified contractor service the tank, and continuously monitor it with the above-mentioned safety devices. They should also know whom to contact when a spill or leak occurs.

Owners can obtain more information from the Environmental Protection Agency’s hotline at (800) 424-9346, between 9:00 a.m. and 6:00 p.m. EST.

Sources:
Publications
from the
University of New Hampshire Technology Transfer Center

Copies of the following books and pamphlets and our complete list of publications are available through the UNH T² Center. Some of our publications are for a two-week loan only, and others have an additional cost, as indicated below. If you are requesting an item with a charge, please include the check with your form. If ordering by mail, follow the instructions below. To request by telephone, call 603-862-2826, or in NH, 800-423-0060. You can also request by fax us at 603-862-2364, and you can e-mail to cplourde@cisunix.unh.edu.

The following materials are available free of charge.

____ UNH T² Center Video Catalog

____ Flexibility in Highway Design. A guide written for highway engineers and project managers who want to learn more about the flexibility available to them when designing roads. With many colored pictures and easy-to-read tables, it clearly illustrates successful approaches used in other highway projects.

____ CDL Information Sheets. Describes basic drug testing procedures, provides information about setting policies for a drug testing program before positive results occur, and lists providers of CDL testing.

____ Highway Utility Guide. Useful to utility and highway professionals, educators, and government officials.

____ Calcium Chloride Package. A package of informative articles and pamphlets explaining the benefits of deicing with calcium chloride.

The following materials involve an extra cost. Please send a check with the form if requesting one of these materials.

____ Manual of Practice for Anti-icing of Local Roads. A rewrite of Manual of Practice for an Effective Anti-icing Program published by the FHWA, this UNH T² Center workshop notebook describes the difference between deicing and anti-icing, and it elements of a good anti-icing program. $15

____ Part IV of the Manual on Uniform Traffic Control Devices (MUTCD). Published by ATSSA, this book reprints the MUTCD standards for uniform work zone traffic control. $15

The following materials are available for a two-week loan.

____ Traffic Control Systems Handbooks. Surveys the many types of available traffic control systems for urban, suburban, and highway streets.

To Request Material By Mail

Check the items you would like to receive. Fill out this form and include a check in the envelope, if necessary. Cut out this page and mail to the UNH T² Center.

Name: ____________________________
Position: __________________________
Organization: ______________________
Address: __________________________
Town: __________ State: __________ Zip: _________

Check is enclosed payable to: University of New Hampshire

$15 _______ $30 _______
The following videos are available from the UNH T²-Center Video Library. You can have five videos for a two-week period with no charge. To request by mail, check the videos you would like to borrow (up to 5 at a time), fill out the mail request form, staple closed, affix stamp, and mail. To request by telephone, call (603) 862-2826 or (800)423-0060 (in NH). Visit our complete publication and video catalog on our website at http://www.t2.unh.edu.

DC-212 Effective Snow Fences 20 min. Demonstrates the benefits of snow fences based on the needs of chief administrative officers.

DC-217 Drainage Pipe Installation 17 min. Shows the correct procedure for drainage pipe installation. Discusses excavating, compacting, filling, and planning.

DC-225 Traffic Barriers 46 min. An overview of traffic barriers, how they work, why they're used, what factors cause them to fail, and installation of different systems: the cable barrier system, the box beam barrier system, W-beamwood and steel signpost systems, concrete barrier systems, and traffic barrier terminals.

DC-237 Plastic Flamecoat 9 min. Explains the advantages of using a plastic flame coating system to coat materials that are subject to corrosion. Shows test evidence and some of the uses of plastic flame coating.

DC-243 Plows of the Future 8 min. Improvement of snow plows and how SHRP is researching them. Snow Scoop is featured.

M-201 The Snowfighters 24 min. Methods, procedures, and equipment for effective snow removal on streets and highways.

M-297 Using Snow Plows on Motorgraders 16 min. Describes the types of plows and conditions for their use, how to connect each type, and how to plow using the proper plow type.

M-231 Mechanical Cleaning of Unlined Ditches 20 min. This tape defines the four principle features of a ditch and their functions. It then demonstrates two methods of mechanical cleaning of ditches. The first uses a motor grader and the other uses a backhoe. It stresses the importance of reestablishing positive drainage. Supplement available.

M-248 White Gold 26 min. Emphasizes the proper selection and operation of snow equipment. Discusses the advantages and limitations of various types of equipment, plows, and blades.

M-273 Frost Action in Soils 13 min. Describes how frost heaves are formed, the effects they have, and testing of frost action.

M-285 Response to Winter 21 min. Discusses the levels of winter service a department of transportation expects to provide. Provides better understanding of winter operations including maintenance function codes and the duties of the workers.

PA-219 Snow Removal—Colorado 18 min. Defines snow removal policies and snow and ice removal management, including pre-season management.
Milestones:

Dennis Allen is the new Road Agent in Tilton.

Robert Bennett is the new Public Works Director in Belmont.

Edwin Mattson is no longer the Road Agent in Fitzwilliam.

Bruce MacBrien has joined the Town of Meredith as their Assistant Public Works Director.

Websites:

There are many helpful websites for Public Works employees. Here are just a few. If you have others that your colleagues could benefit from, send the urls to kathy.desroches@unh.edu. We'll publish the site and your name in Road Business (no commercial sites please).

UNH T2 Center:
http://www.t2.unh.edu

New MUTCD

http://www.ems.psu.edu/wx/newx.html
http://www.intellicast.com/weather/bos/nexrad/
Two useful sites that provide a range of weather information. Information provided by Dave Barker, Director of Administrative Services, Town of Epping.

continued from page 2

(DOS version), which is used in a laptop computer to download reports from the Series 500 system, will not accommodate the change to Year 2000. They recommend that any municipality that uses this software purchase the Windows-based 750IS interface software. A representative from 3M asserted that the actual field equipment will run fine on January 1, 2000, and that the software is the only potential problem.

Finally, some readers are probably wondering what will happen to such computer programs as RSMS, SIMS, and MEMS. Each of these programs issued after 1996 have been tested for the Year 2000. They are Y2K compliant. However, in general, highway agencies using 386 or 486 computers should consider upgrading. These older models might have internal problems not found in the modern Pentium.

If you are worried about your PC, here are a few things to consider in checking your system for Y2K compliance:

1. Check the date that comes up when you boot your computer—it should be a four-digit year. If not, call your PC manufacturer for fixes or patches.

2. Test your computer by setting the clock to December 31, 1999 and see if it crashes. Or use a free test program located on the web at: http://www.nstl.gov/html/ymark_2000.html.

3. Windows 95 has some problems, download fixes from: http://www.microsoft.com/ithome/topics/year2k or buy the Windows 98 upgrade.

4. Check with your software manufacturers to make sure it is Y2K compliant, or check online using a search engine such as Yahoo or Excite.

5. If your system is networked. Ensure the network hardware and software are Year 2000 complaint.

Sources:
Better Roads, August 1998
Consumer Reports, August 1998

PWNET

Want to know what is happening in other towns? Need a place to ask questions of other Public Works Officials? Then, subscribe to PWNET! It's free. Send an email message to kathy.desroches@unh.edu

In the body of the message type:
Add PWNET your name
For instance:
Add PWNET John Doe
Road Business
Technology Transfer Center
University of New Hampshire
33 College Road, Kingsbury Hall
Durham NH 03824-3591
603-862-2826 or 800-423-0060
(NH)
Fax: 603-862-2364
kathy.desroches@unh.edu
http://www.t2.unh.edu

Calendar

<table>
<thead>
<tr>
<th>October</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>6.</td>
</tr>
<tr>
<td>12</td>
<td>13.</td>
</tr>
<tr>
<td>26.</td>
<td>27.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>November</th>
<th></th>
</tr>
</thead>
</table>

Workshops still being planned at press-time.

Winter Operations

Road Business, Fall 1998, Vol. 13, No. 3

page 12