Larry Jackson, Superintendent of Public Works in Littleton, working at his computer.

On the Road in New Hampshire

Tracking Departmental Costs

Larry Jackson, the Superintendent of Public Works in Littleton, notes that few people understand the role of Public Works Departments. They seldom realize the amount of work done for other departments. He felt it was important to track work to justify his budget and his crew’s time. To track his department’s expenses, he modified an equipment management system he had purchased in June 2001.

Larry creates work orders for all work, whether for his department or for others. Applying a “business like” process, he invoices other departments. He charges only for purchased materials, but tracks hourly expenses for each work order. The hourly rate includes benefits for each employee. Larry provides this information to the selectmen and town manager to see the actual costs for all work.

For equipment costs, Larry uses the Federal Emergency Management (FEMA) rates, which include the insurance and maintenance costs that the Selectmen and the town manager readily accept. To track hourly costs, Larry’s crew completes hourly sheets daily to show what jobs they work on.

Larry has been able to demonstrate best methods. For example, he can show it is cheaper to spread salt on winter roads than to spread sand and then pick it up.

Many perceive that work done by public works is free. By using this system, Larry can show Selectmen the cost of work and answer questions about why other work has not been done. In one instance, the selectmen considered a job “free” because they were using employee time and supplies already in inventory. Larry was able to show that the job actually cost $5,500. Later, when they asked why another job was not completed, he was able to show that those materials were used on the “free” job.

ALSO IN THIS ISSUE

Working Smarter ... 2
Alerting Motorists to Turns and Curves....... 3
Culvert Installation 4
Master Road Scholars............................... 6
Road Scholars ... 7
Wetlands Notification 8
Publications .. 9
Videos .. 10
Milestones & Websites 11
Calendar .. 12
Work Smarter

How Time Slips Away

People often wonder where the time goes. Seldom they get as much done as planned. Sometimes (hopefully not often) people really do “waste” time. Most often, even the best time managers develop “leaks” that allow time to slip away. These time wasters add up. Here are the 11 most common “time wasters.”

1. **Starting a job without thinking it through.** Save time by deciding what to do (step by step) before beginning a job.
2. **Doing things by habit.** Many do tasks a certain way because they’ve always done that way. Look at procedures and processes and change unnecessary or unproductive methods.
3. **Keeping too many records.** A lot of records are required, but many are not especially those we keep for ourselves.
4. **Paying too much attention to unimportant items.** Be productive. Little tasks must be done, but do them in little time. Concentrate efforts and time on major tasks that contribute to getting the job done.
5. **Failing to anticipate a crisis.** According to Murphy’s Law, what can go wrong will. Use quiet time to prepare for the unexpected. The best plan is to use this time to build or strengthen teamwork skills.
6. **Making unnecessary phone calls or visits.** Often they are an excuse to avoid another task. Don’t get caught in the trap of talking about work to avoid work.
7. **Socializing too much.** Watch yourself and your employees. Socializing can be productive, but keep it short.
8. **Failing to guard against interruption.** Don’t be isolated, but, don’t allow people to walk-in either. Find a middle ground that allows people access and allows quiet time for work.
9. **Don’t things that should be delegated.** This is often a supervisor’s worst fault and biggest time leak. Supervisors know what can be delegated and know it is important. Just do it.
10. **Failing to plan regularly with the boss.** Adding something to the job can improve its quality. However, ensure that the added work adds value to the final product.
11. **Doing things that aren’t part of the job.** It happens, and can’t be entirely eliminated, but managers can control it. Managers must set the example and show that their work and time is company work and company time.

Many will see a time leak on this list that applies to them. Use these tips to make time more productive.

Source:
Guiding Motorists through Turns and Curves

Large Single Arrow (W1-6) Chevron (W1-8)

Warning signs are principally for drivers unfamiliar with the road. The Manual of Uniform Traffic Control Devices (MUTCD) governs which signs to use, and how to place them. For turns and curves, it describes the W1 series. This article describes use and placement of two W1 series signs: the Large Single Arrow (W1-6) and the Chevron Alignment (W1-8) signs.

Where to Use W1-6 and W1-8 Signs

W1-6 and W1-8 signs alert drivers, and guide them to the safe path through severe alignment changes. Road managers must install them based on engineering judgment. They should consider them for these situations:

- Where accident records show “run off the road”, “hit fixed object” or other turn or curve related crashes.
- Where accident evidence exists, such as shoulder damage, scars on trees, or other marks on shoulders.
- Where day or night inspection suggests drivers need warning of alignment changes.

Large Single Arrow signs mark sharp turns and short curves. On conventional roads, the sign size is 48 by 24 inches. The MUTCD allows 36 x 18 inch W1-6 signs on low-speed roadways, where the reduced legend size would be adequate.

Chevron Alignment signs mark curves and less than sharp turns. Chevron signs 18 by 24 inches are the standard for conventional roads. The MUTCD allows 12 x 18 inch W1-6 signs on low-speed roadways. They should not have the border shown in the above picture.

Sign Placement

The MUTCD requires locating W1-6 and W1-8 signs on the outside of turns and curves at right angles to approaching traffic. The point of the Arrow or Chevron must indicate the direction of travel. They should be visible for at least 500 feet. The minimum lateral offset is 6 feet. Sign supports shall be breakaway or yielding. Crews may place the signs on existing supports, such as utility poles.

Crews should install W1-8 signs in a series along the length of the turn or curve. They should space signs so drivers can always see two signs.

Note: Compare the visibility of the supplemental panel for advisory speed with the advisory speed built into the sign. Also, note that drivers can see two Chevrons.

Where Not to Use These Signs

Cities and towns should not use these warning signs when the curvature and its severity are apparent to drivers. Excessive use tends to breed disrespect for signs. Municipalities should not use Chevron Alignment signs

1) On winding roads where drivers might see the last in a series of signs where the road begins to turn in the reverse direction, or

2) Where a turn or curve within the segment has inadequate length for proper sign spacing.

Further Information

The MUTCD rules for Large Single Arrow and Chevron Alignment signs are in the Traffic Sign Handbook for New Hampshire Local Roads. It is available from the UNH T² Center.

Source:

Special Thanks to Bill Lambert, NHDOT Traffic Engineer, for the photo.
Place Culverts Correctly the First Time

Planning is vital to replace a culvert successfully. If the necessary crew members, equipment, and material are on site, replacing a small culvert is a one-day project. This article will provide information for planning and installing culverts. It is in two parts:

1. Sizing the culvert
2. Correct installation practices

Sizing Pipes Correctly

Culvert Diameter or Cross Section. When an existing culvert has adequately carried water during heavy storms, the manager can use the same size pipe. If unable to observe water flow, the manager can ask adjoining landowners about culvert performance.

Insufficient capacity could be due to prior poor judgment, inadequate installation, or a changed drainage area. Whatever the cause, more capacity is necessary. If a larger or modified drainage area is likely in the future, the manager should consider a larger diameter pipe. When increasing culvert capacity, managers should consider impacts on adjoining property.

For small diameter culverts, installing two pipes of the same size is often an economical solution. A qualified person should calculate water volumes, velocities, and pipe sizes, especially for large capacity culverts. The NHDOT Manual on Drainage Design for Highways describes this procedure. Analysts should also consider impacts on upstream and downstream culverts. Finally, managers should document the reasons for changing pipe size.

Culvert Length. Pipe length depends on the depth of the culvert. The culvert inlet should be below the bottom of the road base course. If necessary, crews should lower the ditch bottom. A metal or plastic culvert should be entirely below the base course. If that is not possible, managers should consider a concrete culvert. To determine correct length, managers should

1. Calculate the road shoulder height above the streambed or ditch bottom (“D” in Figure 1).
2. Calculate the length on each side beyond the shoulder. The roadside fore slope should be 4:1, or flatter, if right of way permits.
3. Add the length on each side to the road surface and shoulder width (“W” in Figure 1).

When pipes are too short, water will erode the slope at the end of the pipe. In time, it will erode the road shoulder and traveled way. Frequent inspection is required, and repairs often necessary after each heavy rain. Headwalls are a better solution.

Installation Practices

The following practices will result in a culvert installation that will last many years.

Crews should dig a trench wide enough to work alongside the pipe and to compact around it. A qualified person should determine elevations. Culverts should have a slope along its length of 1/2 to 1 inch per foot. A hand level is usually sufficient for this basic surveying.

Qualified personnel should also inspect the foundation soil. Crews should replace poor material with select material. If a poor foundation is likely, supervisors should have material readily available. Engineering, including soils analysis, may be necessary on large pipe installations or in deep fills.

Using hand tools, crews should evenly fine grade the trench bottom to the correct inlet and outlet elevations. They should shape and compact the bottom in an arc to receive the pipe.

They can then set the pipe and align it properly. Supervisors should check inlet and outlet elevations, and record them. They should also record the elevation of the stream bed or ditch.
The National Corrugated Steel Pipe Association's culvert installation manual states:

Too much emphasis cannot be placed on adequate compaction of backfill. Faulty compaction has led to more trouble with pipe installation, flexible and rigid, than all other factors combined.

Crews should backfill only when the pipe is resting firmly on the foundation, and when heavy rain is unlikely. They should begin with 6-inch lifts of small sized material. Hand tamping is the best method to compact and seal the backfill against the lower half of the pipe.

If excavated material is suitable, crews should use it as backfill. Otherwise, they should use select material. Backfill material must be free of rocks larger than two inches. Crews should place the material carefully, and compact it evenly in no more than 8-inch lifts along both sides of the pipe. They should moisten the materials for compaction, but not so much that it becomes unstable.

Compaction equipment operators should work parallel to the pipe, never against it. They should not over compact, because the pipe could bend out of alignment. To achieve adequate cover over a pipe, two or more pipes might be necessary. (See the Fall 2000 Road Business for multiple culvert installation).

For high velocity and volume water flows, slope protection is usually needed. Flared ends are cost effective to funnel water into the pipe and to spread outlet flow. For very high velocity flows, riprap, of a suitable size, is often needed to prevent erosion.

The goal should be to replace a pipe so it will, with minimum maintenance, remain in place for its entire life. Managers and crews can achieve this goal by applying the above information. However difficult to install a culvert properly, it is more difficult to make major repairs later.

The following books provide information for specific situations: Manual on Drainage Design for Highways, NHDOT Drainage, Drainage, Drainage. See page 9

Special thanks to Jerry Ray from HTA for his help with this article.

Source
Road Business, Summer, Vol. 18, No. 2

Welcome Daryle Lamoureux to the UNH T² Center Staff

Daryle Lamoureux joined the UNH Technology Transfer Center as the Program Assistant on May 27, 2003. Daryle is a life-long resident of New Hampshire and a graduate of UNH in Russian. Daryle previously worked in software marketing and public relations for Gambit Communications in Nashua and Hasbro Interactive in Beverly, Massachusetts.

Daryle lives in Rollinsford with his wife, Caroline, and their two daughters, Sasha and Zoë.

Many people had the opportunity to meet Daryle at the Mountain of Demonstrations and the New Hampshire Public Works Municipal Engineers Association Spring Meeting. Look for Daryle this fall at the Snow and Ice Control Conference on September 4, 2003 or at one of our workshops.
Master Road Scholars

Master Road Scholar Mike Bernard

Mike Bernard is the Foreman for the Town of Hooksett. He was promoted to Foreman a year ago. Since joining the town in 1999 as a Truck Driver, he moved to Heavy Equipment Operator, and finally to his current position.

It is not obtaining the title of Master Road Scholar that has kept Mike in the road scholar classes. He finds the classes are invaluable because they help keep him abreast of new technology in the industry. In addition, meeting colleagues from other towns is beneficial because they exchange different ideas.

Mike’s supervisor has always encouraged him to take classes and is proud he has reached the Master Road Scholar level.

Mike and his girlfriend, Janet, have been together for 17 years. Outside of work, Mike enjoys playing golf and pool, and enjoys fishing and camping.

Congratulations Master Road Scholar Mike Bernard.

Master Road Scholar Scott Clarke

Scott Clarke is the Assistant Patrolman in the NHDOT Turnpike Division. He has held this position for six years. Prior to this, Scott worked as a laborer for the NHDOT.

Scott is very proud of achieving Master Road Scholar status. He points out that he is only the second employee of the DOT to obtain the master road scholar title. His supervisor, who encourages him to take classes, is also very pleased.

Scott finds the classes are very informative and believes they will help him to obtain a higher position in the future. He aspires to become a Road Agent. Scott likes the small class sizes because they are personal, open to questions and answers, and allow him to meet new people. To show his appreciation, Scott likes to help UNH T² whenever he can. Scott was an important part of their team at the Mountain of Demonstrations. Although he has obtained Master Road Scholar, Scott has every intention to continue taking classes.

Scott is a single dad who enjoys spending time and having fun with his two young daughters: Jennifer and Amanda. They love going to amusement parks.

Congratulations Master Road Scholar Scott Clarke.
New Hampshire Road Scholars

We are pleased to recognize individuals who, during the Spring of 2003, have achieved the following levels in the UNH T² Center Road Scholar Program.

Master Road Scholar. Participated in UNH T² Center training activities that totaled 100 contact hours and covered the range of topics required for Road Scholar II.

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>George Bachelder</td>
<td>Pittsfield</td>
</tr>
<tr>
<td>Brian Beers</td>
<td>Durham</td>
</tr>
<tr>
<td>Michael Bernard</td>
<td>Hooksett</td>
</tr>
<tr>
<td>Gregory Bowen</td>
<td>Epsom</td>
</tr>
<tr>
<td>Scott Clarke</td>
<td>NHDOT</td>
</tr>
<tr>
<td>Christopher Flagg</td>
<td>West Swanzey</td>
</tr>
<tr>
<td>Paul Parker</td>
<td>North Sutton</td>
</tr>
<tr>
<td>Mike Reifke</td>
<td>NHDOT</td>
</tr>
</tbody>
</table>

Senior Road Scholar. Participated in UNH T² Center training activities that totaled 70 contact hours and covered the range of topics required for Road Scholar II.

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stephen Bevis</td>
<td>Chesterfield</td>
</tr>
<tr>
<td>Jonathan Champagne</td>
<td>Andover</td>
</tr>
<tr>
<td>Reggie Cleveland</td>
<td>Henniker</td>
</tr>
<tr>
<td>David Cook</td>
<td>Mason</td>
</tr>
<tr>
<td>Norman Litalien</td>
<td>Nashua</td>
</tr>
<tr>
<td>Ken Louzier</td>
<td>NHDOT</td>
</tr>
</tbody>
</table>

Road Scholar II. Participated in UNH T² Center training activities that totaled 50 contact hours and covered a set of minimum subject areas including road design and construction basics, other technical, tort liability and safety, and supervision or personal development.

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carl Quiiram</td>
<td>Goffstown</td>
</tr>
<tr>
<td>Birney Robbins</td>
<td>Keene</td>
</tr>
<tr>
<td>Randall Smith</td>
<td>Sullivan</td>
</tr>
<tr>
<td>Donna Walton</td>
<td>Nashua</td>
</tr>
<tr>
<td>Richard Whitefield</td>
<td>Rochester</td>
</tr>
</tbody>
</table>

Road Scholar I. Participated in UNH T² Center training activities which totaled 30 contact hours.

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edwin Richards</td>
<td>Swanzey</td>
</tr>
<tr>
<td>Robert Sullivan</td>
<td>Merrimack</td>
</tr>
<tr>
<td>Craig Sykes</td>
<td>Raymond</td>
</tr>
<tr>
<td>William Tourville</td>
<td>Hanover</td>
</tr>
<tr>
<td>Joe Troy</td>
<td>Derry</td>
</tr>
<tr>
<td>Dave Trudell</td>
<td>Dover</td>
</tr>
<tr>
<td>Thomas Willis</td>
<td>Rochester</td>
</tr>
</tbody>
</table>

Detour for Safety

Scoop the Skunk

Mikey Hague tries his luck at scooping the skunk. Mikey’s father, Michael, works at the Bow Public Works Department.

The Technology Transfer Center hosted a Detour for Safety activity at the 2003 Mountain of Demonstrations. Ninety-four people completed all four activities.

Other activities were:

- *Do You Dig Safe?* Hosted by Comcast,
- *What's Wrong with this Workzone?* Hosted by Stay Safe Traffic Products,
- *Pre-Trip Inspection.* Hosted by Southworth Milton.
Effective March 21, 2003, NHDES adopted Administrative Rule: Wt 303.05(q). It introduces a Notification Process versus Wetlands Permits for certain routine maintenance activities. It applies to routine roadway maintenance activities, including but not limited to:

- Existing culvert replacements, extensions, or orientations;
- Headwall construction, repair, replacement, or stabilization; and
- Roadside ditch maintenance.

The NHDOT and NHDES have developed Best Management Practices for Routine Maintenance Activities in New Hampshire. The manual has a menu of BMPs specific sites and conditions. Other environmental protection methods might be more appropriate in certain circumstances. If one or more BMP applies, the road manager fills in a “Notification of Routine Roadway and Railway Maintenance Activities” form. Completion of the form requires:

1. The name and address of the activity sponsor;
2. The name and telephone number of an authorized representative;
3. The location of the proposed activity;
4. A description of the proposed activity;
5. Reference to the applicable BMP from the NHDOT manual;
6. A copy of the USGS topographical map identifying the location of the proposed project;
7. Sketches of the proposed construction design;
8. Color photographs of the proposed work site showing existing structures, surrounding land, and the subject waterbody; and
9. A signed certification that the information provided is accurate and correct.

The road manager must provide a copy of the completed form to NHDES, the governing body, and to the conservation commission at least 5 days prior to beginning work. (A typical wetlands permit can take up to 3 months.) A copy of the notification must be posted in a prominent location at the worksite prior to starting work.

All work must completed on land owned by the activity sponsor. If on other land, the sponsor must receive a written release from the owner, or submit the form to the owner 5 days prior to beginning work.

To qualify for the notification process, work shall not involve moving tracked or wheeled equipment into or through surface waters or wetlands. Work within surface waters shall be done “in the dry,” either during periods of low water or behind temporary diversions, such as sandbag cofferdams. Dredged materials shall be placed outside a wetland. Work must be completed in accordance with the Comprehensive Shoreland Protection Act. No work shall be done:

- In or adjacent municipally-designated wetlands;
- Within ¼ mile of a New Hampshire designated river
- In bogs, marshes, tidal wetlands, undisturbed tidal buffer zones, or in sand dunes.

For forms and additional information see, http://www.des.state.nh.us/wetlands/rule-law.htm#rules

Publications
University of New Hampshire Technology Transfer Center

Copies of the following books and pamphlets, and our complete list of publications, are available through the UNH T² Center. The website has the most up-to-date list of publications. When requesting an item with a charge, please include the check with your form. If ordering by mail, follow the instructions below. To request by telephone, call 603-862-2826, or in NH, 800-423-0060. You can also request by fax to 603-862-2364, online at www.t2.unh.edu, or by e-mail to t2.center@unh.edu

The following materials are available free of charge.

___Chain Saw Safety. Flyer on preventing accidents and proper maintenance of a chain saw.

___Concrete in Practice Fact Sheets. This pack includes 29 fact sheets covering various practices.

___Controlling Nonpoint Source Runoff Pollution from Roads, Highways, and Bridges. Published by the EPA in August, 1995. A fact sheet to improve knowledge about and efforts to control runoff pollution from roadways and construction activities.

___Improving Highway Safety At Bridges On Local Roads and Streets. This guide discusses effective low cost methods of improving and enhancing bridge and bridge approach safety.

___Local Low Volume Roads and Streets. Basic information for town officials, crew managers, and road managers on rural streets and other less-traveled roads.

___Statewide Travel Forecasting. This FHWA book describes methods and techniques of statewide travel forecasting.

___Utility Cuts In Paved Roads. This guide focuses on making and restoring utility cuts in a timely and safe manner, with as little disruption of traffic and commerce as possible, and without leaving behind a defective pavement.

The following material involves a minor charge. Please send a check with the form when requesting one of this notebook.

___Pave Cool 2.0: Asphalt Pavement Cooling Tool User’s Guide. (3.5” disk) Pave Cool is a program to calculate the cooling curve of a lift of Hot Mix Asphalt and evaluate the time available to effectively compact the lift.

___Drainage, Drainage, Drainage. The manual describes various drainage concepts and features. Problems with drainage, and proper maintenance to ensure good drainage, are also discussed. A UNH T² Center Workshop notebook. $15

To Request Material by Mail
Check the items you would like to receive. Fill out this form and include a check in the envelope, if necessary. Cut out this page and mail to the UNH T² Center.

Name: __

Position: __

Organization: __

Address: __

Town: __ State: _____________ Zip: ______________________
The following videos are available from the UNH T² Center Video Library. You can have five videos for a two-week period with no charge. To request by mail, check the videos you would like to borrow (up to 5), fill out the mail request form, staple closed, affix stamp, and mail. To request by telephone, call (603) 862-2826 or in NH, (800) 423-0060. Visit our complete publication and video catalog on our website at http://www.t2.unh.edu or email us at t2.center@unh.edu

DC-216, Dust Control and Stabilization with Calcium Chloride, 18 min. Explains road structure and base stabilization procedure and how CaCl₂ works as a stabilizer.

DC-251, The Importance of Road Drainage, 19 min. Describes surface and subsurface drainage, drainage systems, and procedures for their inspection and repair.

DC-259, Ready Mixed Flowable Fill, 5 min. Examines the applications and benefits of flowable fill.

M-205, Potholes: Causes, Cures, and Prevention, 11 min. Discusses how potholes develop, how they should be properly repaired, and how to develop a pothole repair program along with some preventive techniques.

M-223, Cleaning and Clearing of Bridges, 13 min. Discusses the 8 easy steps to cleaning and clearing bridges. Tells what tools are involved in the cleaning and clearing of bridges, and what types of things to look for, as far as repairs, that may be needed for the future.

M-226, Cleaning of Lined Ditches, Culverts, and Catch Basins, 16 min. Demonstrates good practices for maintaining lined ditches, culverts, and catch basins. Shows before and after conditions and points out the benefits of a properly maintained drainage system.

M-226, Cleaning of Lined Ditches, Culverts, and Catch Basins, 16 min. Demonstrates good practices for maintaining lined ditches, culverts, and catch basins. Shows before and after conditions and points out the benefits of a properly maintained drainage system.

PA-236, New Hampshire Public Works Mutual Aid Program, 10 min. Informal video that explains the benefits of joining the Mutual Aid program.

Technology Transfer Center
33 College Road
University of New Hampshire
Durham, NH 03824-3591
Milestones:

Jim Brown, Town Engineer in Salem, is the new President of the New Hampshire Public Works Municipal Engineering Association, *Martha Drukker,* Engineer in the City of Concord has completed her two year term and will serve as Past President.

Ed Chase has joined Merrimack at the Public Works Director.

Scott Clarke has left the NHDOT to join Hollis.

Kathy L. DesRoches, Assistant Director UNH T² Center, received a Meritorious Service Award from the New England Chapter of the APWA.

Jeffrey Jordan is the new Road Agent in Chichester.

Daryle Lamoureux has joined the UNH T² Center staff as a Project Assistant.

Pete Lavoie, Community Services Director in Dover, has completed his term as Chair of the Mutual Aid for Public Works Committee.

Newington and *Surry* have joined Mutual Aid for Public Works.

Websites:

UNH T² Center: http://www.t2.unh.edu

The Minnesota Web Site Development Guidelines for City and County Highway Functions http://www.lrrb.gen.mn.us/
Go to Tools and then to Webguidelines

NHDOT Department Contacts
http://webster.state.nh.us/dot/contactus.htm

Snow and Ice Control Expo
http://www.easternsnowexpo.org/

Sign Change Deadline

The deadline is approaching for supplemental plaques at intersections where traffic is required to stop in more than 2 directions. The mandatory requirement is to include the supplemental plaque with the message “4-Way,” “3-Way,” or “All Way” by January 17, 2004. Road Managers may want to begin installing these plaques now.

PW.NET

Want to know what is happening in other towns? Learn the very latest in regulations? Need a place to ask questions of other public works officials? Want to be the first to receive notifications of UNH T2 Center workshops? Then, subscribe to PW.NET. It’s free. Send an email message to: kathy.desroches@unh.edu

In the body of the message type:
Add pw.net your name

For instance:

Add pw.net John Doe
Calendar

Planned UNH T^2 Center workshops

Fall of 2003

For additional information or registrations, call the UNH T^2 Center or check the web-site.

- **All About Asphalt**
 - September 30, 2003 New London
 - October 8, 2003, Keene
 - October 9, 2003, Portsmouth

- **Basics of a Good Road**
 - 2 Locations

- **Cost Estimating**
 - September 16, 2003, New London
 - September 23, 2003, Portsmouth

- **DrainMS**
 - 1 Location

- **Erosion Control BMPS**
 - 2 Locations

- **Gravel Road Maintenance**
 - October 16, 2003, Manchester
 - October 17, 2003, Lincoln

- **ICS for Public Works**
 - October 1-2, 2003, Fire Academy

- **Reconstruction Project Planning**
 - September 25, 2003, Enfield